Our publications

Home / Research / Publications

Our publications

Thèses de doctorat

Bibliographie

Manual wheelchairs

Optimal Control Formulation For Manual Wheelchair Locomotion Simulations: Influence Of Anteroposterior Stability. - Loisel J, Rouvier T, Hybois S, Bascou J, Sauret C.
J. Biomech Eng. 2023, In press. Disponible auprès de https://doi.org/10.1115/1.4063274
Vibration Response of Manual Wheelchairs According to Loads, Propulsion Methods, Speeds, and Ground Floor Types. - Larivière O, Chadefaux D, Sauret C, Thoeux P.
Vibration. 2023. 6(4):762-776 Disponible auprès de https://doi.org/10.3390/vibration6040047
Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion. - Poulet Y, Brassart F, Simonetti E, Pillet H, Faupin A, Sauret C.
Sensors. 2023, 23(1):58 Disponible auprès de https://doi.org/10.3390/s23010058
Modal Characterization of Manual Wheelchairs. - Lariviere O, Chadefaux D, Sauret C, Kordulas L, Thoreux P.
Vibration 2022, 5, 442-463. Disponible auprès de https://doi.org/10.3390/vibration5030025
Manual wheelchair biomechanics while overcoming various environmental barriers : a systematic review. - Rouvier T, Louessard A, Hybois S, Simonetti E, Bascou J, Pontonnier C, Pillet H, Sauret C.
Plos One, 2022 ; 17(6): e0269657. Disponible auprès de https://doi.org/10.1371/journal.pone.0269657
How was studied the effect of manual wheelchair configuration on propulsion biomechanics : a systematic review on methodologies. - Fritsch C, Poulet Y, Bascou J, Thoreux P, Sauret C.
Frontiers in Rehabilitation Sciences : Disability, Rehabilitation, and Inclusion, 2022 ; 3:863113. Disponible auprès de https://doi.org/10.3389/fresc.2022.863113
Vibration transmission during manual wheelchair propulsion: a systematic review. - Larivière O, Chadefaux D, Sauret C, Thoreux P.
Vibration. 2021:4(29):444-482. Disponible auprès de https://www.mdpi.com/2571-631X/4/2/29
Manual wheelchair's turning resistance: swivelling resistance parameters of front and rear wheels on different surfaces. - Fallot C, Bascou J, Pillet H, Sauret C.
Disabil Rehabil Assist Technol. 2021;16(3):324-331. Disponible auprès de https://doi.org/10.1080/17483107.2019.1675781
Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. - Eydieux N, Hybois S, Siegel A, Bascou J, Vaslin P, Pillet H, Fodé P, Sauret C.
Disabil Rehabil Assist Technol. Available from: 2020;15(3):305-313. Disponible auprès de https://doi.org/10.1080/17483107.2019.1571117
Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. - Hybois S, Puchaud P, Bourgain M, Lombart A, Bascou J, Fodé P, Pillet H, Sauret C.
Med Eng Phys, 2019;69:153-160. Disponible auprès de https://doi.org/10.1016/j.medengphy.2019.06.002
On the influence of the shoulder kinematic chain on joint kinematics and musculotendon lengths during wheelchair propulsion estimated from multibody kinematics optimization. - Puchaud P, Hybois S, Lombart A, Bascou J, Pillet H, Fodé P, Sauret C.
J Biomech Eng, 2019;141(10):101005. Disponible auprès de https://doi.org/10.1115/1.4043441
Shoulder kinetics during start-up and propulsion with a manual wheelchair within the initial phase of uninstructed training. - Hybois S, Siegel A, Bascou J, Eydieux N, Vaslin P, Pillet H, Fodé P, Sauret C.
Disabil Rehabil Assist Technol. 2018;13(1):40-46. Disponible auprès de https://doi.org/10.1080/17483107.2016.1278471
Is bearing resistance negligible during wheelchair locomotion ? Design and validation of a testing device. - Bascou J, Sauret C, Lavaste F, Pillet H.
Is Acta Bioeng Biomech. 2017;19(3):165-176. Disponible auprès de http://doi.org/10.5277/ABB-00659-2016-03
A method for the field assessment of rolling resistance properties of manual wheelchairs. - Bascou J, Sauret C, Pillet H, Vaslin P, Thoreux P, Lavaste F.
Comput Methods Biomech Biomed Engin. 2013;16(4):381-91. Disponible auprès de https://doi.org/10.1080/10255842.2011.623673
Assessment of field rolling resistance of manual wheelchairs. - Sauret C, Bascou J, de Saint Rémy N, Pillet H, Vaslin P, Lavaste F.
J. Rehabil. Res. Dev. 2012;49:63–74. Disponible auprès de https://doi.org/10.1682/jrrd.2011.03.0050

Divers

Which typical floor movements of men's artistic gymnastics result in the most extreme lumbar lordosis and ground reaction forces ? - Eyssartier C, Billard P, Robert M, Thoreux P, Sauret C
Sports Biomechanics. In press. Disponible auprès de https://www.tandfonline.com/doi/full/10.1080/14763141.2022.2140702
In-vivo characterization of the lumbar annulus fibrosus in adults with ultrasonography and shear wave elastography. - Galinié P, Eyssartier C, Sauret C, Tordjman M, Missonier ML, Carlier R, Skalli W, Vergari C.
Medical Engineering & Physics 2023, 120, In press. Disponible auprès de https://doi.org/10.1016/j.medengphy.2023.104044
A penalty method for constrained multibody kinematics optimisation using a Levenberg-Marquardt algorithm. - Livet C, Rouvier T, Sauret C, Pillet H, Dumont G, Pontonnier C.
Comput Methods Biomech Biomed Engin, 2022;in press. Disponible auprès de https://doi.org/10.1080/10255842.2022.2093607
Golf Swing Biomechanics : A Systematic Review and Methodological Recommendations for Kinematics. - Bourgain M, Rouch P, Rouillon O, Thoreux P, Sauret C.
Sports 2022, 10, 91. Disponible auprès de https://doi.org/10.3390/sports10060091

Personnes amputées de membre inférieur

Three-dimensional acceleration of the body center of mass in people with transfemoral amputation : Identification of a minimal body segment network - Simonetti E, Bergamini E, Bascou J, Vannozzi G, Pillet H.
Gait & Posture, 201;90:129-136. Disponible auprès de https://doi.org/10.1016/j.gaitpost.2021.08.017
On the impact of the erroneous identification of inertial sensors’ locations on segments and whole-body centers of mass accelerations : a sensitivity study in one transfemoral amputee - Basel J, Simonetti E, Bergamini E, Pillet H.
Medical & Biological Engineering & Computing, 2021;59(10):2115-2126. Disponible auprès de https://doi.org/10.1007/s11517-021-02431-w
Estimation of 3d body center of mass acceleration and instantaneous velocity from a wearable inertial sensor network in transfemoral amputee gait : a case study - Simonetti E, Bergamini E, Bascou J, Vannozzi G, Pillet H.
Sensors, 2021;21(9):3129. Disponible auprès de https://www.mdpi.com/1424-8220/21/9/3129
Experimental characterization of the moment-angle curve during level and slope locomotion of transtibial amputee : Which parameters can be extracted to quantify the adaptations of microprocessor prosthetic ankle ? - Davot J, Thomas-Pohl M, Villa C, Bonnet X, Lapeyre E, Bascou J, Pillet H.
Proc Inst Mech Eng H 2021;235(7):762-769. Disponible auprès de https://doi.org/10.1177%2F09544119211006523
Gait events detection using inertial measurement units in people with transfemoral amputation : a comparative study - Simonetti E, Bergamini E, Villa C, Bascou J, Vannozzi G, Pillet H.
Medical & Biological Engineering & Computing, 2020;58:461–470. Disponible auprès de https://doi.org/10.1007/s11517-019-02098-4
Microprocessor prosthetic ankles: comparative biomechanical evaluation of people with transtibial traumatic amputation during standing on level ground and slope. - Thomas-Pohl M, Villa C, Davot J, Bonnet X, Facione J, Lapeyre E, et al.
Disabil Rehabil Assist Technol. 2019. Disponible auprès de https://doi.org/10.1080/17483107.2019.1629112
Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry? - Loiret I, Villa C, Dauriac B, Bonnet X, Martinet N, Paysant J, et al.
Prosthet. Orthot. Int. 2019;43:492–9. Disponible auprès de https://doi.org/10.1177%2F0309364619865814
Spinopelvic sagittal alignment of patients with transfemoral amputation. - Facione J, Villa C, Bonnet X, Barrey C, Thomas-Pohl M, Lapeyre E, et al.
Eur. Spine J. 2019;28:1920–1928–1920–1928. Disponible auprès de http://dx.doi.org/10.1007/s00586-019-06017-x
Analyse cinématique des mouvements des ceintures scapulaire et pelvienne au cours de la marche des personnes amputées trans-tibiales. - Salah H, Loiret I, Martinet N, Villa C, Pillet H, Taiar R, et al.
Neurophysiol. Clin. Neurophysiol. 2016;46:277–8. Disponible auprès de https://doi.org/10.1016/j.neucli.2016.09.101
Cross-Slope and Level Walking Strategies During Swing in Individuals with a Lower Limb Amputation. - Villa C, Loiret I, Langlois K, Bonnet X, Lavaste F, Fodé P, et al.
Arch. Phys. Med. Rehabil. 2016;98:1149–57. Disponible auprès de https://doi.org/10.1016/j.apmr.2016.10.007
Reliability quantification and gait loading asymmetry assessment with wearable insoles in transfemoral amputee people at different speeds. - Loiret I, Villa C, Dauriac B, Bonnet X, Lavaste F, Martinet N, et al.
Neurophysiol. Clin. Neurophysiol. 2016;46:267. Disponible auprès de https://doi.org/10.1016/j.neucli.2016.09.074
Evolution of vaulting strategy during locomotion of individuals with transfemoral amputation on slopes and cross-slopes compared to level walking. - Villa C, Drevelle X, Bonnet X, Lavaste F, Loiret I, Fodé P, et al.
Clin. Biomech. 2015;30:623–8. Disponible auprès de https://doi.org/10.1016/j.clinbiomech.2015.03.022
APSIC: Training and fitting amputees during situations of daily living. - Pillet H, Drevelle X, Bonnet X, Villa C, Martinet N, Sauret C, et al.
IRBM 2014;35:60–5. Disponible auprès de https://doi.org/10.1016/j.irbm.2014.02.005
Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces. - Langlois K, Villa C, Bonnet X, Lavaste F, Fodé P, Martinet N, et al.
J. Rehabil. Res. Dev. 2014;51:193–200. Disponible auprès de https://doi.org/10.1682/JRRD.2013.05.0118
Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions - Bonnet X, Villa C, Fodé P, Lavaste F, Pillet H.
Effect of walking velocity. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014;228:60–6 Disponible auprès de http://pih.sagepub.com/content/early/2013/11/28/0954411913514036.abstract
Vaulting quantification during level walking of transfemoral amputees. - Drevelle X, Villa C, Bonnet X, Loiret I, Fodé P, Pillet H.
Clin. Biomech. 2014;29:679–83. Disponible auprès de https://doi.org/10.1016/j.clinbiomech.2014.04.006
Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait. - Bonnet X, Pillet H, Fodé P, Lavaste F, Skalli W.
Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012;226:70–5. Disponible auprès de https://doi.org10.1177/0954411911429534
Internal power assessment during trans-femoral amputee gait. - Bonnet X, Pillet H, Fode P, Skalli W, Lavaste F.
Effect of speed. Lett. Med. Phys. Readapt.2010;26:107–9. Disponible auprès de https://doi.org/10.1007/s11659-010-0231-2
Three-Dimensional Motions of Trunk and Pelvis During Transfemoral Amputee Gait. - Goujon-Pillet H, Sapin E, Fodé P, Lavaste F.
Arch. Phys. Med. Rehabil. 2008;89:87–94. Disponible auprès de https://doi.org/10.1016/j.apmr.2007.08.136
Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees. - Sapin E, Goujon H, de Almeida F, Fode P, Lavaste F.
Prosthet. Orthot. Int. 2008;32:201–18. Disponible auprès de https://doi.org/10.1080%2F03093640802016639